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ABSTRACT
Interpreting molecular cytogenomic findings that cover the
human genome (e.g., microarray results) is challenging, as it
requires accessing and working with multiple, diverse sources
of data that are often large and heterogeneous. These data
need to be accessed, queried, and simultaneously integrated
to achieve open-ended goals, such as interpreting findings
to make diagnoses and engage in genetic counselling. Cur-
rently, typical workflows of users are laborious, as data sources
are often not integrated and must be accessed separately.
Furthermore, large document sets often have to be combed
through to assist in interpretation. Analytics tools are needed
to help users process and distill large bodies of information
into manageable sizes so the most relevant portions can be
focused on. Current tools typically do not offer support for
interactively exploring and engaging with visual represen-
tations of important entities and relationships (e.g., chro-
mosomes, gene-phenotype relationships, and scientific arti-
cles). We present VErdICT, a visual analytics tool that can
support users in their interpretation of molecular cytoge-
nomic findings. A participatory design approach was taken
to make VErdICT human-centered. We describe its devel-
opment, usability and usefulness, and outline some future
research challenges.

CCS Concepts
•Human-centered computing → Interaction design;
Visual analytics; •Computing methodologies → In-
formation extraction; •Applied computing → Genomics;
Document management and text processing;
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1. INTRODUCTION
While computational techniques and methods for analyz-

ing health and medical data are improving at a rapid pace,
many activities still require human experts to be involved
in the analysis. In the domain of molecular cytogenomics,
relationships among important entities (e.g., genes and phe-
notypes) are continually being discovered, and views on the
significance of genetic mutations and abnormalities are con-
tinually being revised. Databases and catalogs that contain
the most current evidence are also updated and revised on
a regular basis. As a result, it is impossible to remain fully
abreast of relevant developments in the field. This poses
a challenge for clinicians and researchers, as findings (e.g.,
structural variations in a patient’s genome) from molecular
cytogenomic techniques and analyses must be interpreted
within the context of the latest available evidence. Such
interpretation is essential for a number of important tasks
that geneticists perform, such as patient diagnosis and sub-
sequent genetic counseling.

Cytogeneticists are relied on to interpret and determine
the clinical relevance of molecular cytogenomic findings. Due
to the high degree of expertise required, it is impossible for
such analysis to be done solely by computers; thus, human
experts must be part of the analysis process. Additionally,
because of the diversity of data sources, their large size, and
the rapidity with which they change, it is impossible for hu-
mans to analyze the relevant data without computational
support. Visual analytics tools (VATs) can fulfill such re-
quirements, as they combine the strengths of humans and
computers by integrating computational processing and in-
teractive visual representations [35]. In doing so, joint cog-
nitive systems are formed in which cognitive activities, such
as interpreting molecular cytogenomic findings, emerge from
an interactive discourse between a user and a VAT [29].

In this paper we present VErdICT (Visual Evidence-based



Interpretation for CyTogenomics), a VAT designed to sup-
port interpretation of molecular cytogenomic findings. VEr-
dICT’s visual interface provides a single point of access to
multiple data sources that are otherwise separate, includ-
ing a searchable, custom-built index of all documents in the
MEDLINE database, and custom gene and phenotype dic-
tionaries that are linked to the index. VErdICT employs
interactive visualizations for working with document search
results, and for exploring gene-phenotype relations within
chromosomal regions.

VErdICT was developed in response to the needs of users
within the cytogenomics domain. To make VErdICT human-
centered, we took a participatory design approach, directly
involving domain experts in the design and implementation
process. The design team was highly interdisciplinary, com-
posed of experts in visualization, human-computer interac-
tion, natural language processing, molecular biology, and cy-
togenomics. Formative evaluation with target users helped
to assess the usability and usefulness of VErdICT through-
out the development process.

This paper is structured as follows: Section 2 provides
background information regarding the users, their tasks, and
some considerations for design. Section 3 briefly discusses
related work and identifies existing gaps. Section 4 describes
the development, components, usability and usefulness, and
current limitations of VErdICT. Finally, Section 5 outlines
some research challenges and future work.

2. BACKGROUND
Molecular cytogenomics is the field in which aspects of

molecular genetics and cytogenetics are combined. Cytoge-
netics focuses on studying the structure and function of the
chromosome, especially with respect to the number, struc-
ture, function, and abnormality. The development of flu-
orescent probes complementary to chromosomal DNA has
led to the development of fluorescent in situ hybridization
(FISH), a technique that links cytogenetics to molecular ge-
netics [4, 14, 18, 17]. The field of molecular cytogenomics is
particularly important for diagnosis of prenatal, postnatal,
and acquired chromosomal abnormalities, as well as for ge-
netic counseling. By adopting FISH and other techniques,
such as comparative genomic hybridization, cytogeneticists
can examine the association between visible chromosome re-
arrangements and defects at the DNA level.

One important activity in microarray testing is identify-
ing Copy Number Variations (CNVs), which are alterations
of DNA in which there is variation in the number of copies
of one or more DNA sections. Some detected CNVs have
no role in causing disease; some, however, have been associ-
ated with diseases such as autism and schizophrenia. While
techniques can help identify CNVs, determining their signif-
icance is not a simple task—doing so requires expert judg-
ment and interpretation of the findings by a highly skilled
cytogeneticist.

The interpretation of CNVs is not a simple task. It re-
quires a review of genes that exist within a chromosomal re-
gion, phenotypes that may be related to those genes, various
annotations of the human genome, and the relevant scientific
literature. This requires accessing and integrating disparate
and diverse sources of data. Furthermore, the data sources
(e.g., gene databases, phenotype catalogs, scientific articles)
can be quite large and are continually changing—often on
a daily basis. Due to the dynamic nature of the data, they

have to be reviewed regularly to be well informed and to
make interpretations consistent with the most current evi-
dence and accepted scientific consensus. This is especially
true of the scientific literature, which is generally consid-
ered to be the gold standard of data sources. The challenge
is compounded by the fact that the published research can
contain inconsistencies. For example, CNVs of one partic-
ular chromosomal region (16p13.11) have been linked with
autism in one paper [33], whereas another proposed that the
same CNVs might be benign [11]. A number of such incon-
sistencies exist, and expert human judgment is required to
assess and interpret them.

2.1 Users and Tasks
The target users in which we are interested are geneticists

and cytogeneticists, in both research and clinical settings.
For the sake of consistency, we will focus primarily on cy-
togeneticists in clinical settings. The overarching activity
in which such users engage is interpreting the findings from
patient analysis to determine their clinical significance. In
this context, “interpretation” is a high-level label of a com-
plex activity that involves sub-activities such as analytical
reasoning, sense making, and decision-making. To inter-
pret the significance of a given set of findings (e.g., CNVs
in a patient sample), cytogeneticists perform a number of
interrelated tasks. These include, among others, identifying
chromosomal regions of interest, assessing the importance of
specific structural variations, determining relevant links be-
tween genes and phenotypes, and comparing findings with
those reported in the literature. Complex activities of this
nature do not take place in a linear fashion; thus, VATs
should be designed such that users are provided with differ-
ent interaction mechanisms for working with visual repre-
sentations in order to carry out such aforementioned tasks
[28].

Interpretation can be a time-consuming activity, depend-
ing on the complexity and types of CNVs, often requiring
several hours to interpret findings from a single patient.
Thus, cytogeneticists can often handle results from only a
small number of patients in a day. A number of factors con-
tribute to the time it takes to interpret findings: inconsis-
tencies in the literature; rarity of certain findings; constantly
changing evidence; uncertain significance of some genomic
variants; number and size of data sources that must be ac-
cessed and queried; and non-integrated nature of the data
sources. This is compounded by the fact that such inter-
pretation cannot be done computationally, as expert human
judgment is required at each step of the process. Moreover,
this judgment cannot come from any individual, but must
rather come from highly trained specialists.

While such characteristics make it impossible to interpret
findings in a fully automatic, computational manner, there
still is much potential for computational tools to increase
the speed and effectiveness of the process. This is especially
true for the large, heterogeneous, non-integrated sources of
data that must be accessed and used. VATs can provide such
computational support, with the added benefit of interactive
visual representations of data that can facilitate perceptual
and cognitive tasks.

3. RELATED WORK
Existing relevant work can be roughly categorized into

three approaches: 1) developing tools that visualize genomic



or phenomic data; 2) developing search literature search in-
terfaces; and 3) developing VATs to work with document
collections for specific users and domains.

The first approach has resulted in a number of visual-
ization tools for specific purposes—e.g., genome assemblies
[22], sequence variants [8], and phenomic relations [34], and
SNP genotype assignments for personalized medicine [36].
Also related are genome browsers (e.g., [13]), which visual-
ize genomes and annotations such as gene predictions, vari-
ations, and expression. While tools in this category tend
to be valuable for specific users, data, and tasks, they do
not integrate the necessary data sources, including the sci-
entific literature, to comprehensively support interpretation
of molecular cytogenomic findings.

The second approach has primarily been aimed at pro-
viding alternatives to PubMed, a search engine and inter-
face to the MEDLINE (Medical Literature Analysis and Re-
trieval System Online) database, which contains much of the
literature on biology, biochemistry, and other health- and
medicine-related fields. Tools in this category are generally
not VATs; rather, they use traditional search interfaces and
focus on providing different ways of organizing, analyzing,
or offering search capabilities on the MEDLINE data, such
as using the Gene Ontology in search [3] or summarizing
subjects [25]. Lu [20] provides a survey of alternative inter-
faces to PubMed. Such tools tend to return results of queries
as textual lists, often distributed across multiple pages. For
simple search tasks, such as finding a specific article, they are
sufficient. For more complex and open-ended search tasks,
however, this type of strategy can result in information over-
load, as users have to scan through long lists of results and
examine each one. Using interactive visualizations can make
search systems more human-centered [12].

The third approach, which is seen mainly in the visual
analytics literature, has been aimed at developing VATs to
support users in their work with document collections. Such
tools are often aimed at specific users in specific domains,
such as journalism [2] and intelligence analysis [9]. How-
ever, because such approaches are not directed towards the
life sciences, they do not integrate the necessary data, ex-
tract the necessary entities from text, or properly support
the types of tasks outlined in Section 2.1 for activities in
molecular cytogenomic contexts.

4. VERDICT
VErdICT is a web-based VAT that has been developed

to address the lack of tools specifically supporting inter-
pretation of molecular cytogenomic findings. VErdICT is
based on a traditional client-server architecture, in which
the server is responsible for most data processing, and the
client is responsible for generating visualizations and han-
dling user input, both through textual queries and interac-
tions with the visualizations. An Apache handles different
kinds of requests from the client, and performs relevant an-
alytic operations. A separate Apache Solr server functions
as a search server, which maintains and handles queries on
the document index.

4.1 Development
The main source of scientific articles for the life sciences

community is PubMed, which is a search engine and inter-
face to the MEDLINE database. The National Library of
Medicine (NLM) hosts the database for free so that it can

be downloaded and used for research purposes. MEDLINE
consists of article “citations”, which are comprised of arti-
cle metadata, including authors, journal title, Medical Sub-
ject Heading (MeSH) keywords, publication date, and so on.
Also included in each citation is the abstract text. Currently,
the MEDLINE database consists of approximately 24 mil-
lion citations. In this article, we consider each citation as a
document.

We have downloaded the entire MEDLINE database, and
have developed a custom index using the open-source Apache
Solr/Lucene project. Lucene is essentially an information
retrieval library that supports full-text indexing and search
functionality. Solr is a search platform that runs on the
Lucene index. To rank documents, we are using the well-
known term frequency-inverse document frequency (tf-idf)
scheme [26]. Lucene also ranks based on an internal simi-
larity measure that generates a vector space model (VSM)
score [27], using index terms as dimensions and tf-idf val-
ues as weights. In addition to common operations that
Solr/Lucene supports, such as stemming and tokenizing, we
have developed a UIMA (Unstructured Information Man-
agement Architecture) pipeline. The UIMA pipeline can be
integrated into the Solr/Lucene indexing process, to extract
entities of interest (genes and phenotypes) from the text.

To find our desired entities, Concept Mapper (CM), a high
performance dictionary lookup tool, has been used as a com-
ponent in the UIMA pipeline. We have developed two dic-
tionaries: 1) a phenotype dictionary, based on the Human
Phenotype Ontology (HPO [19]), that contains all human
phenotype names along with their synonyms; 2) a gene dic-
tionary, based on the standard gene catalog from the Human
Genome Nomenclature Committee (HGNC [10]), that con-
tains all gene names in their canonical forms, along with
their synonyms and variant names. During indexing, in
which all fields of the MEDLINE database are examined,
CM looks for matches on dictionary terms and synonyms,
and adds a field to the index to indicate a match. For ex-
ample, the canonical form for a gene is BRCA1. A number
of synonyms for BRCA1 are listed in the dictionary (e.g.,
“BRCA1/BRCA2-containing complex, subunit 1”, BRCC1,
“Fanconi anemia, complementation group S”). If CM detects
the canonical form or any of the synonyms in a document’s
text, a field will be added to the indexed document to indi-
cate the presence of the BRCA1 gene in the text.

In a second stage of the UIMA pipeline, we perform a form
of concept normalization for genes, which can be referred to
as gene normalization [7]. Authors often write gene names
in short forms. For example, IL3/5 can be used to mean IL3
and IL5; or freac1-freac7 can be used to mean freac1, freac2,
and so on, to freac7. Our gene normalization component
takes the output from CM, and applies a series of regular
expressions to each token that is found in the text, in an
attempt to capture the correct genes when such shortcuts
are used. The genes that are found are also added to the
index.

4.2 Components
From a user’s perspective, VErdICT has 3 major compo-

nents: 1) interactive visual cytogenomic queries, in which
users can interact with visual representations of chromo-
somes, genes, and phenotypes; 2) visual search and docu-
ment analytics, in which users can search and explore the
full set of citations (metadata) from MEDLINE; and 3)



a genome browser, which is a custom implementation of
JBrowse [31], that allows users to view and interact with an-
notations of the human reference genome. Because genome
browsers are common and are described in many other places,
we will focus only on the first two components.

4.2.1 Interactive Visual Cytogenomic Queries
Without the support of VErdICT, users have to construct

queries for the literature in a traditional textual-input fash-
ion. Users may need to initially consult a number of differ-
ent data sources—e.g., to determine which genes are within
a chromosomal region of interest, and then to determine
which phenotypes, if any, may be associated with genes in
the region. Additionally, when users are not presented with
a visual summary of a chromosomal region, it can be easy
to miss potentially relevant genes and/or phenotypes. In
such cases, where exact queries are not known in advance,
visualizations have been shown to help users develop more
accurate and relevant queries, especially in the context of
searching large document collections [12].

Cytogeneticists often begin an activity with a set of chro-
mosomal regions of interest, which arise from the findings of
molecular cytogenomic techniques. Thus, VErdICT allows
users to start by selecting the chromosome(s) in which they
are interested. Once selected, visual representations of the
selected chromosomes that use a familiar style of coloring
different chromosomal bands are displayed, as in Figure 1.
From this point, users can select a band or other larger or
smaller regions of interest on the chromosome.

Figure 1: Visual representations of chromosomes.
The user has chosen chromosomes 1 and 2.

Users can then drill into the specified region of the chromo-
some to see the genes within the region. VErdICT presents
a visualization of all genes within the region (encoded as or-
ange rectangles in Figure 2). The location and size of genes
are encoded within the space according to their location on
the chromosome. Genes that inhabit the white region are
within the selected area—q12.1, which can be seen in the
label above the genes. The gray regions at both ends en-
code sensitivity information—i.e., genetic information that
is slightly outside of the user’s query specifications, but can
be very useful for exploratory types of tasks [32].

One task that is often required in interpreting molecular
cytogenomic findings is the identification of gene-phenotype
relations. Typically, users have to consult other catalogs
and/or websites (e.g., OMIM, UCSC genome browser) to
perform such a task. In VErdICT, however, relations be-
tween genes and phenotypes are explicitly encoded and vi-
sually represented with links, as shown in Figure 2.

Phenotypes are encoded and colored according to the sta-
tus of their relationship with a given gene, which is classified
in the Online Mendelian Inheritance in Man catalog (OMIM,

www.omim.org). The relationship status is encoded using
one of 4 colors: pink for relations in which genetic muta-
tions contribute to susceptibility to multifactorial disorders
(e.g., diabetes, asthma) or susceptibility to infection (e.g.,
malaria); green for unconfirmed or possibly spurious map-
pings from genes to phenotypes; yellow for relations in which
genetic variations result in“nondiseases”—genetic variations
resulting in apparently abnormal laboratory test values (e.g.,
dysalbuminemic euthyroidal hyperthyroxinemia); and blue
for known causal relations between genetic variations and
phenotypes.

At this stage, users can refine their queries by adjusting
or entirely changing their selected region on the chromo-
some. Additionally, they can choose to be taken to external
websites that provide more information about genes (gene-
names.org) or phenotypes (omim.org). Users can also view
the selected region in the genome browser component. Fi-
nally, users can select any gene or phenotype, and view all of
the articles in which it appears in the MEDLINE database.
This will take the user to the visual search and document
analytics component of VErdICT.

4.2.2 Visual Search and Document Analytics
In this component users can interactively search and ex-

plore the set of documents (i.e., scientific articles) from MED-
LINE. Users typically come to this component via the cy-
togenomic visualization component, in which they select a
gene or phenotype to view its relevant literature. In such a
case, a query is sent from the client to our web server, which
then sends a query to the search server to find the relevant
documents. For instance, if a user has selected the BRCA1
gene, all articles in which BRCA1 or one of its synonyms
appears in the text will be returned from the query. A simi-
lar process will take place if a user has selected a phenotype
instead of a gene.

Although many genes and phenotypes are mentioned in
only a small number of articles, a number of them have been
well studied and appear in thousands of articles. As a result,
a query can return thousands of documents. As discussed
in Section 3, the typical way of displaying a result set of
this magnitude is not useful. To address this issue, when
results are large, VErdICT employs a clustering algorithm
and an interactive visualization that encodes the results of
the clustering. Currently, 2 different clustering algorithms
are provided. The first is the Lingo algorithm, which looks
for meaningful phrases to use as cluster labels, and then
assigns documents to the labels to form groups [23]. The
second algorithm uses suffix tree clustering (STC), which
finds groups of documents sharing a high ratio of frequent
phrases; cluster descriptions are a subset of the same phrases
used to form the cluster [37]. Generally speaking, the Lingo
algorithm provides more meaningful labels, but takes more
time than STC, especially when the number of documents
is in the thousands. Because the clustering is happening
in “real-time”—i.e., it is happening as the user’s queries are
being submitted—the time it takes has a significant effect on
the user experience. Currently, VErdICT defaults to Lingo
if the results are fewer than 1,000 and STC if greater than
1,000. Users can change these default settings if they prefer.

Figure 3 shows the result from searching for ”BRCA2 and
endometrial cancer”. Within the time range, which defaults
to the past 10 years, there are 41 articles found. A bar graph
encodes the number of article matches per year to show the
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Figure 2: Gene-phenotype relations within a region that the user has selected on chromosome 13. A: visual
representation of chromosome 13; B: genes that exist within the specified region of the chromosome; C:
phenotypes that have known or possible relations with the displayed genes; D: detail view for a specific gene-
phenotype relation. E: article-count view showing number of articles in PubMed/MEDLINE per displayed
gene.

user the temporal distribution of results. The blue bars fall
within the selected (or default) time range and the gray bars
fall outside of the range. This encodes sensitivity informa-
tion [32] and may help the user to further explore relevant
documents. The slider underneath can be used to adjust
the range, allowing for dynamic querying of the document
index [30]. Below the bar graph are three other bar graphs
that encode the values (number of articles) for the top ten
phenotypes, genes, and MeSH keywords that appear in the
document result set. The number of articles for phenotypes
and genes is calculated based on our custom index. MeSH
keywords are supplied by authors. Users can interact with
each bar, to remove it from the list, go to an external source
(e.g., OMIM, HGNC), or view only document subset for a
particular phenotype, gene, or keyword. Below this, the re-
sult of the document clustering is shown. In this case, the
user selected the Lingo clustering algorithm. The 41 docu-
ments are categorized into 15 different clusters, each of which
is labeled with the cluster name. The size of each cluster en-
codes the number of documents within it. In Figure 3C, the
user has selected the “germline mutations” cluster. When
a cluster is selected, the documents within it will populate
the list on the right. Each document in the list is tagged
with the gene(s), phenotype(s), and keyword(s) that appear
within it. For instance, within the selected cluster we can
see that the one of the documents has within it the MSH6,
MLH1, and other genes. Each document also has 3 buttons
that allow the user to add the document to a primary cate-
gory, add it to a secondary category, or completely remove it
from the list. This can help the user to triage the document
result set. By clustering the documents, users can usually
disregard a number of the clusters, making it easier to find
the information they are looking for.

Users can adjust their query at any time in a number of
different ways. First, they can adjust the time range that
is being considered in the search. There may be a num-

ber of reasons why a user would want to do this: perhaps
the user is specifically interested in early primary references
documenting a gene or phenotype; or s/he may be interested
in the most current information that has been published in
the past few years. Second, they can adjust other parame-
ters, such as which fields are being considered in the search
(e.g., journal, article title). Third, they can change or add
to the search box and resubmit the query—e.g., change it to
“BRCA2 gene mutation”. Any number of Boolean operators
can also be used and combined. Fourth, users can go back
to the chromosome/gene/phenotype visualization and select
another gene or a phenotype. VErdICT has been designed
in such a way that states of the tool (i.e., underlying data
models, visual representations, and the visual state of the
interface) are maintained while users move from one com-
ponent to another, which can help create a seamless, fluid
experience [1, 5]. Thus, users can go back to viewing genes
and phenotypes and continue their activity exactly where
they previously left off.

4.3 Usability and Usefulness
Usability is typically assessed along three lines: efficiency,

effectiveness, and satisfaction. Although a formal summa-
tive evaluation has not been completed, we have been con-
ducting ongoing formative evaluations, and there are a num-
ber of positive indications of VErdICT’s usability. A par-
ticipatory design and evaluation approach was taken in the
development of VErdICT. Two intended users—one a cy-
togeneticist and one a molecular geneticist—were involved
in the design process from the beginning. Through brain-
storming, discussion meetings, and feedback from interac-
tive prototype demos, VErdICT was continually refined to
meet the needs and expectations of the target audience. A
student working on a research project also used VErdICT
extensively and provided feedback. While not guaranteeing
usability, a participatory approach is known to help identify
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Figure 3: VErdICT interface showing result of
searching for “BRCA2 AND endometrial cancer”.
A: Users see the temporal distribution of results,
and can adjust the time range. B: Top phenotypes,
genes, and keywords found within the results. C:
Document cluster visualization; size encodes num-
ber of documents in cluster. D: List of documents
in a selected cluser; custom dictionary is used to
extract genes and phenotypes in the text.

and fix usability issues during design, and to increase the
probability of a usable final product [21]. With respect to
satisfaction, we can briefly say that our participatory design
approach has led to a number of improvements that help to
align VErdICT with the desires and expectations of users.

4.3.1 Efficiency
Multiple factors influence the efficiency of user activities.

Users typically have to consult multiple sources of data (e.g.,
HPO, PubMed, genome browsers) to assist in interpretation,
which can be laborious. VErdICT integrates a number of
data sources and provides a single point of access through
its visual interface. For example, users can discover gene-
phenotype relations within a chromosomal region (Figure 2),
then submit a query to find articles that contain a particu-
lar phenotype, and then work with the document result set
(Figure 3). Users can go right back to where they were in
the chromosome view, as the underlying state of the system
is kept persistent throughout an activity. This allows for
seamless interaction among various components, and a uni-
fied point of access to data that would otherwise be located
in different databases or websites. User feedback thus far
strongly suggests that VErdICT can increase the efficiency
with which activities are performed.

4.3.2 Effectiveness
Effectiveness can be examined in terms of how well com-

mon tasks are supported. Some tasks that were outlined in
Section 2.1 are listed below, with an example of how VEr-
dICT supports each one’s performance:

• Identifying chromosomal regions of interest: after search-
ing the literature for a disease or condition, VErdICT
identifies the top 10 genes that are found in the results
(Figure 3B). Users can select a gene, and be taken
to the chromosome visualization showing the region in
which the gene exists (Figure 2). Users can explore the
region to find potentially relevant genes, phenotypes,
and relations between them.

• Assessing importance of specific structural variations:
users can select a region in which patient CNVs exist
(Figure 2A), find phenotypes that are associated with
the region (Figure 2C), and then have VErdICT dis-
play articles in which a given phenotype appears (Fig-
ure 3). Scientific evidence within the articles helps
users assess the degree of importance of a particular
CNV with respect to the selected phenotype.

• Determining relevant links between genes and pheno-
types: VErdICT explicitly encodes relationships be-
tween genes and phenotypes (see Figure 2), helping
users to identify potentially important relationships
within a region of interest. This information is avail-
able in the HPO, but it is more tedious to uncover
without visual, spatial encodings of the relationships.
Furthermore, VErdICT connects genes and phenotypes
to the literature in a seamless manner, allowing users
to access detailed information about gene-phenotype
relationships to help determine which are relevant.

• Comparing findings with those reported in the liter-
ature: users typically have to cross-reference findings
(e.g., CNVs) with the most recent published evidence
to determine their significance. VErdICT allows users
to easily select a chromosomal region in which a CNV
exists (Figure 2A), view genes and phenotypes within
the region (Figure 2B,C), and see the number of pub-
lished articles mentioning those genes (Figure 2E). Typ-
ically, users would have to consult multiple data sources
to perform such a task, but VErdICT supports its per-
formance in a seamless, integrated manner.

Besides the data-integration aspect of VErdICT, another
indicator of its effectiveness is with respect to how document
search results are displayed. Users typically use PubMed to
perform the literature search aspect of their activities. Re-
sults from PubMed are displayed in a simple textual list,
through which users must scroll to see each article (see Fig-
ure 4). VErdICT, on the other hand, provides visual rep-
resentations of document metadata and document clusters.
Using custom dictionaries and NLP techniques during docu-
ment indexing, phenotypes and genes within documents are
identified in the text and displayed to the users. The docu-
ment cluster visualization can help users incrementally nar-
row down relevant information and focus on a single concept
with a fewer number of documents than the original search—
e.g., 9 documents for germline mutations, as in Figure 3D.
Preliminary feedback from users suggests that this ability to
narrow down increases the effectiveness of tasks performed



using VErdICT compared to using PubMed. Figure 4 shows
the result of searching for “BRCA2 AND endometrial can-
cer”on PubMed, which is the same query that was submitted
to VErdICT in Figure 3.

Figure 4: PubMed interface showing result of
searching for “BRCA2 AND endometrial cancer”.

4.4 Current Limitations
Two limitations of VErdICT should be noted. First, we

are working only with article citations—including abstract
texts—and not full texts. Thus, important information that
does not appear in the abstracts or metadata is missed. Sec-
ond, gene normalization is currently returning many false
positives. This is due to the ambiguous nature of acronyms
used by authors. No solution to this problem currently ex-
ists, but two of the authors are working on an NLP solution.

5. CHALLENGES AND FUTURE WORK
While developing VErdICT and engaging in this line of

research, a number of research challenges and opportunities
for future work have come to light:

• Natural Language Processing: Currently, relations in
the text are identified based only on co-occurrence.
Some previous research has focused on identifying im-
plicit gene-phenotype relations within text [15, 16].
Future work should integrate this type of sophisticated
relationship extraction into the UIMA pipeline.

• Clustering Algorithms and Analytics Models: While
VErdICT provides two different algorithms for clus-
tering document query results, users cannot interact
with the underlying models or algorithms to adjust
their parameters. Providing such features may help to
increase the quality of human-VAT coupling [6, 24].

• Ontologies: Although we have made use of the HPO
to support document search, we have discovered that
complex ontologies can be difficult to understand, and
even expert users often do not have accurate mental
models of them. Future research is needed to explore
this issue and determine how complex ontologies can
be best linked to document collections.

• Interactive Triaging: Helping users focus on relevant
information within large collections of documents re-
quires further work. There is an need to develop inter-
active visual analytics techniques to support iterative,
nested triaging to help users quickly navigate through
and make sense of document collections at various lev-
els. Such work could certainly be generalized to other
domains in which large document collections are used.
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